(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(p(X)) → p(active(X))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
p(mark(X)) → mark(p(X))
proper(f(X)) → f(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(p(X)) → p(proper(X))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
p(ok(X)) → ok(p(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(p(X)) → p(active(X))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(p(X)) → p(proper(X))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

p(mark(X)) → mark(p(X))
top(ok(X)) → top(active(X))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
p(ok(X)) → ok(p(X))
f(mark(X)) → mark(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(0) → ok(0)
f(ok(X)) → ok(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
top(mark(X)) → top(proper(X))

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6]
transitions:
mark0(0) → 0
ok0(0) → 0
active0(0) → 0
00() → 0
p0(0) → 1
top0(0) → 2
s0(0) → 3
f0(0) → 4
cons0(0, 0) → 5
proper0(0) → 6
p1(0) → 7
mark1(7) → 1
active1(0) → 8
top1(8) → 2
s1(0) → 9
ok1(9) → 3
s1(0) → 10
mark1(10) → 3
p1(0) → 11
ok1(11) → 1
f1(0) → 12
mark1(12) → 4
cons1(0, 0) → 13
ok1(13) → 5
01() → 14
ok1(14) → 6
f1(0) → 15
ok1(15) → 4
cons1(0, 0) → 16
mark1(16) → 5
proper1(0) → 17
top1(17) → 2
mark1(7) → 7
mark1(7) → 11
ok1(9) → 9
ok1(9) → 10
mark1(10) → 9
mark1(10) → 10
ok1(11) → 7
ok1(11) → 11
mark1(12) → 12
mark1(12) → 15
ok1(13) → 13
ok1(13) → 16
ok1(14) → 17
ok1(15) → 12
ok1(15) → 15
mark1(16) → 13
mark1(16) → 16
active2(14) → 18
top2(18) → 2

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(mark(z0)) → mark(p(z0))
p(ok(z0)) → ok(p(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
PROPER(0) → c10
S tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
PROPER(0) → c10
K tuples:none
Defined Rule Symbols:

p, top, s, f, cons, proper

Defined Pair Symbols:

P, TOP, S, F, CONS, PROPER

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

TOP(ok(z0)) → c2(TOP(active(z0)))
PROPER(0) → c10

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(mark(z0)) → mark(p(z0))
p(ok(z0)) → ok(p(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
S tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
K tuples:none
Defined Rule Symbols:

p, top, s, f, cons, proper

Defined Pair Symbols:

P, TOP, S, F, CONS

Compound Symbols:

c, c1, c3, c4, c5, c6, c7, c8, c9

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(mark(z0)) → mark(p(z0))
p(ok(z0)) → ok(p(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

p, top, s, f, cons, proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(11) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

p(mark(z0)) → mark(p(z0))
p(ok(z0)) → ok(p(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(z0)) → c3(TOP(proper(z0)))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(CONS(x1, x2)) = 0   
POL(F(x1)) = 0   
POL(P(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1]   
POL(ok(x1)) = 0   
POL(proper(x1)) = 0   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [3]   
POL(CONS(x1, x2)) = [3]x2   
POL(F(x1)) = 0   
POL(P(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = 0   
POL(ok(x1)) = [2] + x1   
POL(proper(x1)) = [2] + [2]x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
We considered the (Usable) Rules:none
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(CONS(x1, x2)) = 0   
POL(F(x1)) = 0   
POL(P(x1)) = x1   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CONS(mark(z0), z1) → c9(CONS(z0, z1))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(CONS(x1, x2)) = [2]x1   
POL(F(x1)) = 0   
POL(P(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = [3]x1   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [3] + x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = [1] + x1   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

S(ok(z0)) → c4(S(z0))
We considered the (Usable) Rules:none
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(CONS(x1, x2)) = x1   
POL(F(x1)) = 0   
POL(P(x1)) = [3]x1   
POL(S(x1)) = [2]x1   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = [2] + x1   
POL(proper(x1)) = 0   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
S(ok(z0)) → c4(S(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(mark(z0)) → c6(F(z0))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(CONS(x1, x2)) = [2]x2   
POL(F(x1)) = [2]x1   
POL(P(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

S(mark(z0)) → c5(S(z0))
F(ok(z0)) → c7(F(z0))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
S(ok(z0)) → c4(S(z0))
F(mark(z0)) → c6(F(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(ok(z0)) → c7(F(z0))
We considered the (Usable) Rules:none
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(CONS(x1, x2)) = 0   
POL(F(x1)) = x1   
POL(P(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:

S(mark(z0)) → c5(S(z0))
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
S(ok(z0)) → c4(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

S(mark(z0)) → c5(S(z0))
We considered the (Usable) Rules:none
And the Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(CONS(x1, x2)) = 0   
POL(F(x1)) = 0   
POL(P(x1)) = 0   
POL(S(x1)) = x1   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
S(ok(z0)) → c4(S(z0))
S(mark(z0)) → c5(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:none
K tuples:

TOP(mark(z0)) → c3(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c8(CONS(z0, z1))
P(mark(z0)) → c(P(z0))
P(ok(z0)) → c1(P(z0))
CONS(mark(z0), z1) → c9(CONS(z0, z1))
S(ok(z0)) → c4(S(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
S(mark(z0)) → c5(S(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

P, S, F, CONS, TOP

Compound Symbols:

c, c1, c4, c5, c6, c7, c8, c9, c3

(29) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(30) BOUNDS(1, 1)